
Syllabus and ReviewMBE - 01/27/2015

Syllabus and Review

Modern Binary Exploitation
CSCI 4968 - Spring 2015

Alex Bulazel

1

Syllabus and ReviewMBE - 01/27/2015

Lecture Overview

1. Syllabus
2. Course Overview
3. Review of Background Material

a. Linux
b. C
c. x86 Assembly

2

Syllabus and ReviewMBE - 01/27/2015

Course Details

• Modern Binary Exploitation
• Course Number: CSCI 4968
• Credit Hours: 4
• Semester / Year: Spring 2015
• Meeting Days: Tuesday/Friday 2-4PM
• Room Location: Walker 5113
• Course Website:

• http://security.cs.rpi.edu/courses/binexp-spring2015/
• http://rpis.ec/binexp

• Prereqs:
• CSCI 2500 - Computer Organization

• ECSE 2660 - Computer Architecture, Networks, and Operating
Systems

3

Syllabus and ReviewMBE - 01/27/2015

Instructor

• Instructor: Dr. Bülent Yener
• Office: Lally 310
• Email: yener@cs.rpi.edu

4

Syllabus and ReviewMBE - 01/27/2015

Cyber Is A Team Sport

5

 Markus Branden Sophia Alex
 Jeremy Patrick Austin

Syllabus and ReviewMBE - 01/27/2015

Office Hours

• Office hours:
• Wednesday 7-10 PM @ Sage 3101

• Come hang out at RPISEC hack nights!
• Ask questions, get extra help with MBE
• Collaborate on HW/Labs
• Work on security projects, challenges, etc

6

Syllabus and ReviewMBE - 01/27/2015

Other Options

7

Syllabus and ReviewMBE - 01/27/2015

Digital Office Hours (IRC)

• The RPISEC IRC - http://rpis.ec/irc
• server: irc.rpis.ec
• port: 6667 (6697 for SSL)
• room: #rpisec

• Way faster than emailing back and forth
• Some of us are usually on at ridiculous hours

• basically a 24/7 channel

8

Syllabus and ReviewMBE - 01/27/2015

Options of Last Resort

• Email us
• binexp_ta@cs.lists.rpi.edu

9

Syllabus and ReviewMBE - 01/27/2015

Suggested Textbooks

• Hacking: The Art of Exploitation, 2nd Edition by Jon Erickson
• ISBN 978-1593271442

• The Shellcoder's Handbook: Discovering and Exploiting
Security Holes, 2nd Edition by Chris Anley et al
• ISBN 978-0470080238

10

Syllabus and ReviewMBE - 01/27/2015

Grade Breakdown

• Labs - 60%
• 10 labs @ 6% each
• Lab attendance is MANDATORY as lab

submissions must be checked off in person

• Term Projects - 40%
• 2 Projects @ 20% each
• Like a big lab, but over a few weeks

11

Syllabus and ReviewMBE - 01/27/2015

Syllabus

• READ THE SYLLABUS - Well written, full of details
• It’s on the course website - rpis.ec/binexp

12

Syllabus and ReviewMBE - 01/27/2015

An Atypical Class

• Designed and orchestrated by RPISEC (students)

• Biggest RPISEC class yet!
• CSCI 4971 Secure Software Principles
• CSCI 4972 / 6963 Malware Analysis
• CSCI 4974 / 6974 Hardware Reverse Engineering

• We’re not here to mess around

13

Syllabus and ReviewMBE - 01/27/2015

• Good to see lots of familiar faces!
• RPISEC meetings are Friday 5-7 PM in DCC 324
• Come learn other topics in computer security

• Web hacking
• Malware analysis
• Reverse Engineering
• Digital Forensics
• So so much more

• Meet people from industry, get internships/jobs
• Read more - http://rpis.ec

14

Syllabus and ReviewMBE - 01/27/2015

Lecture Overview

1. Syllabus
2. Course Overview
3. Review of Background Material

a. Linux
b. C
c. x86 Assembly

15

Syllabus and ReviewMBE - 01/27/2015

Course Terminology

• Machine
• A computer, server, sometimes refers to the actual CPU

• Binary
• An executable such as an .EXE, ELF, MachO or other code

containers that run on a machine
• Other names: program, application, service (sometimes)

• Malware
• A malicious binary meant to persist on a machine such as

a Rootkit or Remote Access Tool (RAT)

16

Syllabus and ReviewMBE - 01/27/2015

Course Terminology

• Vulnerability
• A bug in a binary that can be leveraged by an exploit

• Exploit (as a noun)
• Specially crafted data that utilizes vulnerabilities to force

the binary into doing something unintended
• By this definition, exploits are not explicitly malware

• 0day
• A previously unknown or unpatched vulnerability that

can be used by an exploit
• An 0day can also be an exploit using the unpatched vuln

17

Syllabus and ReviewMBE - 01/27/2015

Premise For This Class

“Can we teach a bunch of
programmers how to pwn?”

• Pwn/Pwning
• In security, pwning commonly refers to

vulnerability research and exploit development

18

Syllabus and ReviewMBE - 01/27/2015

Goals for This Course

19

• This will be a very applied, hands on course
• No data structures, algorithms, cryptography, or cyber policy

• Every lecture after this you’re expected to bring your laptop!

• We will cover technically challenging material rarely touched
upon in other classes

• As an individual you will leave with all the skills necessary to
perform vulnerability research, bypass modern security
protections, and develop weaponized exploits

Syllabus and ReviewMBE - 01/27/2015

“Dark Arts” of Computer Science

• Almost non-existent in academia
• Taboo around offensive security

• Rapidly evolving, very technical

• Why learn binary exploitation?
• Can’t defend against what you don’t

understand

• Gain an intimate understanding of
how programs really work

• Fun, intriguing, rewarding problems
• So few people know how to pwn
• Exploding job market

20

Syllabus and ReviewMBE - 01/27/2015

The Market for An 0day (2012)

21

2015? Double these numbers

Syllabus and ReviewMBE - 01/27/2015

Underappreciated Wisdom

“If your program simply segfaulted,
consider yourself lucky.”

 - Prof. Stewart

22

Syllabus and ReviewMBE - 01/27/2015

More Than a Segfault

• The right bugs (vulnerabilities) found in binaries
can be used by exploits to hijack code execution

• Once code execution is achieved by an
attacker...
• Gain privileged information
• Download or install malware
• Steal data
• Wreak any sort of havoc on the machine

23

Syllabus and ReviewMBE - 01/27/2015

Fun Example of Binary Exploitation

“[TAS] Super Mario World "Arbitrary
Code Execution" in 02:25.19 by

Masterjun”

24

Syllabus and ReviewMBE - 01/27/2015

Events in Security & Exploitation

• 1972 - USAF Computer Security Technology Planning Study
describes buffer overflows

• 1988 - Morris Worm exploits use of gets() in finger daemon
• 1996 - Aleph1 publishes “Smashing the Stack for Fun and

Profit” in Phrack
• 2001 - Code Red worm exploits a MS web server vulnerability

to hit hundreds of thousands of computers
• 2004 - Windows XP SP2 released, exploit mitigation era

begins
• 2007 - The first iPhone jailbreak is developed by GeoHot
• 2008-2010 - Stuxnet employs four Windows 0days to spread

through Iranian nuclear refinery control system networks

25

Syllabus and ReviewMBE - 01/27/2015

Course Roadmap

26

• We start off with the fundamentals required
• Basic reverse engineering, memory corruption, classical exploitation

• Different classes of vulnerabilities are introduced and how
they can be leveraged in exploitation
• Stack smashes, format strings, signed/unsigned, Heap, UAF, etc

• Modern exploit mitigations are introduced and how they can
be bypassed in exploitation
• DEP, ASLR, GS/Cookies,

Syllabus and ReviewMBE - 01/27/2015

Lecture Overview

• Syllabus
• Course Overview
• Review of Background Material

• Linux
• C
• x86 Assembly

27

Syllabus and ReviewMBE - 01/27/2015

Quick Linux Overview

• UNIX-like open source kernel
used by many open source
operating systems distros

• Written in C and assembly

• ELF (Executable and Linkable
Format) files for binaries

• We’ll be teaching on Ubuntu
14.04 systems, but exploitation
techniques are pretty universal

28

Syllabus and ReviewMBE - 01/27/2015

Learning Command Line Linux

• We’ll be spending a lot of time using linux at the
command line in this class, so you’ll need to learn
your way around

• Get familiar with the linux command line if you
aren’t already
• http://overthewire.org/wargames/bandit/

29

Syllabus and ReviewMBE - 01/27/2015

Basic Command Line Usage

• ls
• List directory contents

• cd [path]
• change directory
• “..” = previous

• pwd
• Print working directory

• man [command]
• Manual for command

• apropos [whatever]
• Get info on commands/man pages that might do whatever

30

Syllabus and ReviewMBE - 01/27/2015

Working With Files

• cat [file]
• Print the file contents on your terminal

• less [file]
• Like cat, but paged, good for long documents

• mv [file1] [file2]
• Move file1 to file2, removing file1 and overwriting file2 if it exists

• cp [file1] [file2]
• Copy file1 to file2, overwriting file2 if it exists

• rm [file]
• Deletes file

• nano / vim / emacs
• Command line text editors

31

Syllabus and ReviewMBE - 01/27/2015

Piping Program Input / Output

• Pipes - “|”
• Take output of one program, send it as input to another
• $ echo "hello" | cowsay

< hello >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

• $ echo "hello" | cowsay | grep "hello"

< hello >

32

Syllabus and ReviewMBE - 01/27/2015

Lecture Overview

• Syllabus
• Course Overview
• Review of Background Material

• Linux
• C
• x86 Assembly

33

Syllabus and ReviewMBE - 01/27/2015

The C Programming Language

• Designed in 1969-1972 for
writing UNIX operating system

• Imperative systems
programming language
• Very fast, compiled language

• Extremely fine control over

memory and the machine

• Compared to modern
languages, C is considered a
‘low level’ language

34

Syllabus and ReviewMBE - 01/27/2015

Language Depth

35

Syllabus and ReviewMBE - 01/27/2015

Hello World! - C Source

#include <stdio.h>

int main(int argc, char * argv[])

{

 printf("Hello World!\n");

 return 0;

}

36

Syllabus and ReviewMBE - 01/27/2015

Hello World! - Compiling/Running

$ gcc helloworld.c -o helloworld
$./helloworld
Hello World!

37

Syllabus and ReviewMBE - 01/27/2015

Basic Memory Manipulation

int i = 0;
char * message = "hello world";
char * buffer = (char *)malloc(7);

if(buffer == NULL)
 return 1;

strncpy(buffer, message, 5);
buffer[5] = '\n';
buffer[6] = '\0';

for(i = 0; i < 10; i++)
 printf("%s", buffer);

free(buffer);

38

Syllabus and ReviewMBE - 01/27/2015

Running It

$ gcc basic.c -o basic -std=gnu99

$./basic

hello

hello

hello

hello

hello

...

39

Syllabus and ReviewMBE - 01/27/2015

What’s your name?

#include <stdio.h>

#include <unistd.h>

int main(int argc, char * argv[]){

 char buffer[10] = {0};

 printf("What’s your name?\n");

 read(STDIN_FILENO, buffer, 10);

 printf("Hello %s\n", buffer);

 return 0;

}

40

Syllabus and ReviewMBE - 01/27/2015

Hello ALEX 1234 ??

$ gcc name.c -o name

$./name

What’s your name?

ALEX 1234 ABCD

Hello ALEX 1234 ??

41

Syllabus and ReviewMBE - 01/27/2015

What’s your name? - 2.0

#include <stdio.h>

#include <unistd.h>

int main(int argc, char * argv[]){

 char buffer[10] = {0};

 printf("What’s your name?\n");

 read(STDIN_FILENO, buffer, 100);

 printf("Hello %s\n", buffer);

 return 0;

}

42

Syllabus and ReviewMBE - 01/27/2015

Crash!

$ gcc name2.c -o name2

$./name2

What’s your name?

ALEX 1234 ABCD EFGH IJKL

Hello ALEX 1234 ABCD EFGH IJKL

???????????
Segmentation fault (core dumped)

• Bottom line: it’s easy to make grievous errors in C

43

Syllabus and ReviewMBE - 01/27/2015

So If C Scared You...

• If you’re in this class, we expect you to already
know some basic C from CompOrg, CANOS,
OpSys, or NetProg

• Otherwise, review C programming ASAP
• “Hacking: The Art of Exploitation”, chapter 0x200

44

Syllabus and ReviewMBE - 01/27/2015

Lecture Overview

• Syllabus
• Course Overview
• Review of Background Material

• Linux
• C
• x86 Assembly

45

Syllabus and ReviewMBE - 01/27/2015

x86 Assembly

• An assembly instruction set
introduced in 1978 by Intel
• 1978 - 16bit
• 1985 - 32bit
• 2001 - 64bit (Itanium)

• 2003 - 64bit (AMD64)

• Overwrought CISC, a total
playground for exploitation

• As low level as we’ll go

46

Syllabus and ReviewMBE - 01/27/2015

Language Depth

47

Syllabus and ReviewMBE - 01/27/2015

Pulling Back the Curtain

 “… there's way too much information to decode the Matrix. You get used to it,
though. Your brain does the translating. I don't even see the code. All I see is
blonde, brunette, redhead.” -Cypher, The Matrix

48

Syllabus and ReviewMBE - 01/27/2015

x86 Assembly Syntax

• All assembly languages are made up of instruction sets
• Instructions are generally simple arithmetic operations that

take registers or constant values as arguments
• Also called Operands, OpCode, Op(s), mnemonics

• Intel syntax: operand destination, source
• mov eax, 5

• AT&T syntax: operand source, destination
• mov $5, eax

• We’ll be using the Intel syntax in this class

49

Syllabus and ReviewMBE - 01/27/2015

x86 Register Diagram

50

Syllabus and ReviewMBE - 01/27/2015

Important Registers

• EAX EBX ECX EDX - General purpose registers
• ESP - Stack pointer, “top” of the current stack frame (lower

memory)
• EBP - Base pointer, “bottom” of the current stack frame

(higher memory)
• EIP - Instruction pointer, pointer to the next instruction to

be executed by the CPU

• EFLAGS - stores flag bits
• ZF - zero flag, set when result of an operation equals zero
• CF - carry flag, set when the result of an operation is too large/small
• SF - sign flag, set when the result of an operation is negative

51

Syllabus and ReviewMBE - 01/27/2015

Moving Data

• mov ebx, eax
• Move the value in eax to ebx

• mov eax, 0xDEADBEEF
• Move 0xDEADBEEF into eax

• mov edx, DWORD PTR [0x41424344]
• Move the 4-byte value at address 0x41424344 into edx

• mov ecx, DWORD PTR [edx]
• Move the 4-byte value at the address in edx, into ecx

• mov eax, DWORD PTR [ecx+esi*8]
• Move the value at the address ecx+esi*8 into eax

52

Syllabus and ReviewMBE - 01/27/2015

Arithmetic Operations

• sub edx, 0x11
• edx = edx - 0x11; // subtracts 0x11 from edx

• add eax, ebx
• eax = eax + ebx; // add eax and ebx, storing value in eax

• inc edx
• edx++; // increments edx

• dec ebx
• ebx--; // decrements ebx

• xor eax, eax
• eax = eax ^ eax; // bitwise xor eax with itself (zeros eax)

• or edx, 0x1337
• edx = edx | 0x1337; // bitwise or edx with 0x1337

53

Syllabus and ReviewMBE - 01/27/2015

Some Conditional Jumps

• jz $LOC
• Jump to $LOC if ZF = 1

• jnz $LOC
• Jump to $LOC if ZF = 0

• jg $LOC
• Jump to $LOC if the result of a comparison is the destination is

greater than the source

54

Syllabus and ReviewMBE - 01/27/2015

Stack Manipulation

• push ebx
• Subtract 4 from the stack pointer to move it towards lower memory

(zero,) and copy the value in EBX on top of the stack
sub esp, 4
mov DWORD PTR [esp], ebx

• pop ebx
• Copy the value off the top of the stack and into EBX, the add 4 to the

stack pointer to move it towards higher memory (0xFFFFFFFF)

mov ebx, DWORD PTR [esp]

add esp, 4

55

Syllabus and ReviewMBE - 01/27/2015

Calling / Returning

• call some_function
• Calls the code at some_function. We need to push the return

address onto the stack, then branch to some_function
push eip
mov eip, some_function ; not actually valid

• ret
• Used to return from a function call. Pops the top of the stack to eip

pop eip ; not actually valid

• nop
• ‘no operation’ - does nothing

56

Syllabus and ReviewMBE - 01/27/2015

Basic x86

0x08048624: “YOLOSWAG\0”

mov ebx, 0x08048624

mov eax, 0

LOOPY:

mov cl, BYTE PTR [ebx]

cmp cl, 0

jz end

inc eax

inc ebx

jmp LOOPY

end:

ret

57

Syllabus and ReviewMBE - 01/27/2015

Basic x86

0x08048624: “YOLOSWAG\0”

mov ebx, 0x08048624

mov eax, 0

LOOPY:

mov cl, BYTE PTR [ebx]

cmp cl, 0

jz end

inc eax

inc ebx

jmp LOOPY

end:

ret

58

; 9 bytes of string data

; char * ebx = “YOLOSWAG\0”;

; set eax to 0

; label, top of loop

; char cl = *ebx;

; is cl 0? (eg “\0”)

; if cl was 0, go to end

; eax++; (counter for length)

; ebx++; ([ebx] = “Y”, “O”... “\0”)

; go to LOOPY

; label, end of loop/function

; return (len of str in eax)

Syllabus and ReviewMBE - 01/27/2015

Human Decompiler - x86 → C

0x08048624: “YOLOSWAG\0”

mov ebx, 0x08048624

mov eax, 0

LOOPY:

mov cl, BYTE PTR [ebx]

cmp cl, 0

jz end

inc eax

inc ebx

jmp LOOPY

end:

ret

...

char * word = “YOLOSWAG”;

int len = 0;

while (*word != 0)

{

 len++;

 word++;

}

return len;

59

Syllabus and ReviewMBE - 01/27/2015

Additional Material

• Related Readings:
• Hacking: The Art of Exploitation

• Chapter 0x200: Programming - C programming and GDB
• Practical Reverse Engineering (Dang et al)

• Chapter 1 (x86)

• Get familiar with the linux command line if you aren’t already
• http://overthewire.org/wargames/bandit/

60

