Side Channel Attacks

Differential Power Analysis

Power Consumption

- Power consumption depends on the inputs to a circuit.
- We can reveal information about the circuit by observing the power consumption.

Data Acquisition

Data Acquisition

- Insert a small resistor at the ground pin.
- ~ 5 10 ohm

Data Acquisition

- Insert a small resistor at the ground pin.
- ~ 5 10 ohm
- Use an oscilloscope to measure the voltage across the resistor

Power Trace

- We can see the 16 rounds of DES on this trace.
- Notice the variation in voltage between the rounds.

Source: http://www.dpacontest.org/img/secmatv1ASIC_avg.png

Power Trace

Hamming Weight Model

- Count the number of '1s' in a binary number.
- Model each bit as a capacitor.
- A '1' means we charge the capacitor.
- A '0' means we don't charge the capacitor.

Hamming Weight Model

- Example:
 - \circ 0x67 = 0110 0111
 - \circ HW(0x67) = 5

Hamming Distance Model

- Count the number of bits that differ in two binary numbers.
- Represents an XOR gate.
- A bit that changes uses more power than one that doesn't change.

Hamming Distance

Example

- \circ 0x53 = 0101 0011
- \circ 0x78 = 0111 1000
- \circ XOR(0x53, 0x78) = 0010 1011
- \circ HD(0x53, 0x78) = 4

Figure 3. Linear part of the RSM datapath.

 Plaintext is masked prior to encryption.

Given:

- M = {0x00, 0x0F, 0x36, 0x39, 0x53, 0x5C 0x65, 0x6A, 0x95, 0x9A, 0xA3, 0xAC, 0xC6, 0xC9, 0xF0, 0xFF}
- Randomly generated offset shifts masks.
- Offset updated after encrypting one block.

- Need to determine mask offset in order to mount DPA attack.
- Target address bus when reading masks from memory.

 Use hamming weight to guess power consumption of the least significant byte of the address.

- $h = HD(\{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF\})$
- h = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}

We expect to see a pattern like one of the following:

$$\circ \quad h = \{1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 0\}$$

$$\circ$$
 h = {1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 0, 1}

- 0 ...
- $\circ \quad h = \{4, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3\}$

- Select points of interest from power trace.
- Access memory each loop iteration.

Use Pearson
 Correlation Coefficient
 to find best offset.

Offset	Correlation	Offset	Correlation
0x0	.4634	0x8	.9347
0x1	3055	0x9	.0466
0x2	0181	0xA	.1942
0x3	4194	0xB	3935
0x4	.0386	0xC	.3599
0x5	246	0xD	4065
0x6	.1217	0xE	0388
0x7	1709	0xF	5075

- To recover the key:
 - Use hamming distance between key guess and masked plaintext to estimate power consumption.
 - Calculate the correlation coefficient between hypothetical power consumption and the measured power consumption.
- Requires many power traces.

Questions?

- For more information, see:
 - www.dpacontest.org
 - http://link.springer.com/chapter/10.1007/3-540-48405-1 25#page-2