CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 18: Board RE and circuit edits
Actual board RE

- We talked about components last time.
- Now it's time to cover the board itself.
Typical length scales

- Board dimensions: 5 mm to 500 mm
- Board thickness: 0.1 mm to 3 mm
- Copper thickness: 15 μm to 700 μm
- Plating thickness: 250 nm - 40 μm
- Solder mask thickness: 10 to 50 μm
- Copper width: 75 μm - 10 mm
PCB manufacture

- Drill holes in substrate
- Pattern copper
- Stack layers if doing multilayer PCB
- Plate holes
- Soldermask
- Surface plating
Substrates

- Provides mechanical support to conductors and components
- Typically used as ILD (some exceptions)
FR-4

- Woven fiberglass cloth in epoxy matrix
Ceramics

- Alumina is typical
- Harsh environments, RF
Esoteric substrates

- Metal
 - Entire PCB is a giant heatsink
 - Typically single-layer power circuits
- Soft plastics
 - Teflon (RF)
 - Polyimide (flex circuits)
Subtractive process

- Glue copper foil to substrate
- Lithography on surface
- Etch away unwanted material
- Wastes lots of copper!
Semi-additive process

- Glue very thin copper foil to substrate
- Lithography with *negative* of metal pattern
- Electroplate more copper on exposed areas
- Strip mask and etch away extra copper
Soldermask

- Polymer layer over copper and substrate
- Provides mechanical protection to traces
- Electrical insulator
- Causes solder to bead up
 - Reduces risk of shorts during assembly
- Typically negative-acting photosensitive film
Soldermask between pasted pads
Via plating

- Typically done before final copper etch
 - All vias and nets are electrically connected
- Litho to expose vias and mask rest of board
- Electroless activator plating (PdCl etc)
- Electroplate copper over activator
- Strip photoresist
Pad plating

- Bare copper corrodes and won't solder reliably
- Exposed pads are typically covered
 - HASL (solder plating)
 - ENIG (gold over nickel)
 - Immersion silver
 - OSP (organic film)
Multilayer boards

- Boards with >2 layers can't be done in one step
- Start with a rigid core and copper on each side
- Add “prepreg” (fiberglass + uncured epoxy)
- Apply heat+pressure to stick together and cure
- Laminate more copper foil
- Drill and plate holes
- Outer layer patterning, soldermask, plating
Reverse engineering

- Ok, we know how boards are made.
- How do we take them apart?
- Key data needed is connectivity between pads
Techniques for netlist extraction

- Optical
 - Visible
 - X-ray
- Electrical
Visible-light imaging

- Photograph board at each layer
- Deprocess to reveal next layer
- Destructive, but straightforward
X-ray imaging

- High-resolution 3D X-ray systems are used in industry for QA
- These same systems can be used to trace out internal nets without deprocessing
- Requires much more expensive equipment
- Components may occlude parts of circuit
Electrical tracing

- Land probes on pads that you think connect
- Bruteforce the netlist by continuity testing
- Nondestructive
- Can be done on small scale with just a DMM
- Hard to scale up to all of a large design
Electrical tracing

- Main use cases
 - Simple designs with only a few pads
 - Checking if some pin is brought out to a header or not
 - Confirming guesses of connectivity
- Can be automated with bed-of-nails or flying-probe test systems, but still $O(N^2)$ scaling
Deprocessing techniques

- Mechanical
- Chemical
Mechanical deprocessing

- Same basic idea as CMP for IC delayering
- But looser tolerances, typically no chem action
- Can use off-the-shelf sandpaper
Mechanical deprocessing
Mechanical deprocessing
Mechanical deprocessing
Mechanical deprocessing
Mechanical deprocessing
Edge effect

- Analogous to phenomenon seen with CMP
- Same causes
- Solution is the same - sacrificial PCBs
Chemical deprocessing

- Can use sulfuric/nitric acids to eat epoxy out from around the glass
- Normally impractical for a large PCB - mechanical techniques tend to give better results
PCB circuit edits

- Standard PCB rework techniques, but used to hack the board rather than fix it ;)
 - Trace cuts
 - Adding traces
 - Via removal
 - Adding vias
 - Removing components
 - Adding components
Trace cuts

- Use precision milling tool (similar to dental drill) or scalpel under microscope
Adding traces

- Use short length of narrow-gauge copper wire
- Solder to each end and tape down
- Wire-wrap wire is common and cheap
- Can also get custom-made square wires with glue on underside (sold under Circuit Tracks brand name by circuitmedic and others)
Via removal

- Find drill bit slightly larger than hole
- Drill out plating on hole sidewall
- Example shown is overkill, but saved the board (no smaller bits were handy!)
Via insertion

- Fairly easy for 2-layer boards
- Find the appropriate area
- Drill hole
- Run wire through hole and solder to each side
Via insertion

- Creating vias in multilayer boards is harder
- Mill hole through outer layers to expose inner copper
- Solder wire to inner-layer trace/plane
- Repeat as needed for other end of wire
Removing components

- Heat with hot air rework tool
- Remove part with tweezers
Adding extra components

- Often done “dead bug” style
 - Glue top of component to the board
 - Run wires from leads to destination pads
- Scrape soldermask away as necessary
Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster <JohnDMcMaster@gmail.com>