Data Acquisition for RE

- Microscopy
- Imaging
- Registration and stitching
Microscopy

- Optical
- Electron
 - Scanning
 - Transmission
- Scanning probe
 - AFM
 - SCM
Optical microscopy

- No special prep required
- Full color imagery
- Quick setup
- Little training/experience required
- Limited to ~250nm resolution by diffraction :(
Optical microscopy

- Stereo microscopy
- Metallurgical microscopy
 - Epi-illumination
- Transmitted-light microscopy
 - Light shines through thin specimen
 - Usually not used for semiconductors
 - We won't cover this any further
Stereo microscope

- Low magnification (<50x typical)
- Long working distance (few inches)
- Two objectives
 - Full depth perception
 - Bond wire plucking
 - Rebonding
 - Decap inspection
- Fiber-optic or ring lamp
Metallurgical microscope

- Two eyepieces, one objective
 - Both eyes see same image
- Camera port on top
- BF/DF selector
- Epi-illuminator at back
 - Sample is lit through objective
- X/Y/tilt stage
Brightfield metallurgical

- Look at specular reflections from sample
- Shows color / reflectivity variations well
Darkfield metallurgical

- Look at diffuse reflections, ignore specular
- Shows topography better than brightfield
Optical image capture

- Insert beamsplitter before eyepiece(s)
- Direct some light to camera
- Eyepiece and camera may not be parfocal :(
Thin-film interference

- Light reflects from film and substrate
- Beams interfere at multiples of path length
- Color depends on angle + refractive index
Thin-film interference

- image from cleanroom.byu.edu
Thin-film interference
NIC/DIC

- [Nomarski|Differential] Interference Contrast
- Split beam into two polarizations
- Shine beams on sample at slight offset
- Recombine beams
- Highlights glass thickness
Optical diffraction

- Wires on top metal layer often have pitch comparable to the wavelength of light
- Die surface acts as reflective diffraction grating
- Colors vary massively with viewing angle and often go away when magnified
Diffraction on Intel 64Gb NAND
Electron microscopy

- Electrons have wavelength << photons
 - Much smaller diffraction limit
 - Better resolution
- Causes electron flow to sample
 - Sample will build up charge unless grounded
 - Sample typically must be (made) conductive
- Significantly more complex, requires more operator skill and setup/sample prep time
Transmission EM (TEM)

- Shine electron beam through very thin sample
- Requires extensive sample prep
 - Slicing sample is destructive
- Highest resolution (near atomic)
 - Useful for process RE, but not circuit analysis
 - We won't cover TEM in this class
Scanning EM (SEM)

- Raster-scan e-beam over sample
- Feed return signal to CRT or digital sensor
- Images surface, can work with bulk materials
 - Nondestructive in general case
 - May cause problems with sensitive materials
Resolution comparison

Left = Olympus BH2 optical microscope, Mitutoyo 100x objective (total mag 1000x)
Center = JSM-6335 SEM, 2,500x
Right = JSM-6335 SEM, 50,000x
SEM column construction

- Electron gun
- Condensor lenses and aperture
- Astigmatism correction
- Scan coils
Thermionic electron gun

- Can run in low vacuum
- Cheap and simple
- Short lifetime
- Lower resolution
Field emission electron gun

- Somewhat more complex setup
- More intense, focused beam
- Generally gives higher resolution
Electron lenses

- Can't use normal optics
- Focus / deflect beam with magnetic field
Sample-beam interactions

- Secondary electrons
 - Surface topography
- Backscatters
 - Z-contrast
- X-ray emission
 - EDS, WDS for element ID
 - Useful for process RE but not for circuit analysis
- Others possible but not covered here
Backscatter imaging

- Beam electrons hit nucleus of sample atom
- Elastic collision
- $P(\text{backscatter})$ depends on Z
- Provides atomic number info
 - Usually relative, not absolute
- High energy, can exit sample from fairly deep
Backscatter imaging
X-ray spectroscopy (EDS/WDS)

- Beam electron nudges shell electron gently
 - Moved to another shell, but not dislodged
 - Electron springs back home and releases X-ray photons
 - X-ray energy level depends on atom

- EDS and WDS are different ways of detecting the same X-rays
 - EDS = fast, lower energy resolution
 - WDS = slow, much more accurate
EDS spectrum of purple ceramic
Secondary electron imaging

- Beam electron grazes sample atom
- Knocks outer shell electron free
- Low energy, can't penetrate very far
 - Sensitive to surface topography
 - Surface particles etc are bright
- Most SE detectors also pick up BSE
 - Z-contrast is still present to some degree
Everhart-Thornley detector

- **Photocathode** - incident photons generate electrons
- **Light guide** - photons travel up the light guide
- **Scintillator** - electrons strike the scintillator material and generate photons
- **Photomultiplier tube (PMT)** - series of dynodes amplifies the electron signal before it reaches the anode
- **Faraday cage** - can be biased to either attract or repel electrons (+ve for SE)
- **PMT is held at a bias**
- **Response is fast enough to allow scanning at television scan rates.**
 - High gain, small noise degradation and high bandwidth.
Surface particles on smartcard
BSE visible in SE image
Tilted specimen with some BSE
Charging artifacts
Transparent layers

- ~400nm SiO$_2$ over poly transmits visible light but not electrons
Sample coating

- Sputtered metal (Au / Pd / Pt are common)
 - Doesn't degrade
 - Good step coverage
 - Hard to remove
- Evaporated carbon
 - Poor step coverage
 - Can be stripped in oxygen plasma
- Coatings can cause image artifacts
SEM image capture

- Feed detector output to A/D converter
- Add H/V sync and store to file
Scanning Probe Microscopy

- Scanning Tunneling Microscope (STM)
- Atomic Force Microscope (AFM)
 - Variations (SCM etc)
- Low frame rates (moving physical probe)
- Small scan area
STM

- “Objective” is wire sharpened to single atom tip
- Move across sample without contacting
- Working distance is $O(0.5 \text{ nm})$
- Apply voltage between probe and sample, measure current
 - Depends on spacing
STM

- Can reach single-atom resolution
- Example image of CNT
AFM

- Move pointed tip across sample, measure force
- Can operate in contact or non-contact modes
- Normally detects surface topography
SCM

- Scanning Capacitance Microscopy
- Apply AC signal to conductive AFM probe
- Measure coupling to sample
- Can be used for dopant mapping
 - Potentially higher spatial resolution than Dash
 - Measures doping strength, not just type
- See “Two-dimensional dopant profiling by scanning capacitance microscopy” by Williams
Mass imaging

- Motorized sample stage
- Define corners and step size
- Take many pictures automatically
- Can be done with any microscopy technique
 - Some EM can also do huge scan fields
Registration and stitching

- Take tiles for each layer and line them up
- Merge into one large image
- Align multiple layers with each other
Hugin

- Open source tool for image registration
- In-class demo/exercise
Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster <JohnDMcMaster@gmail.com>
 - Prof. Dan Lewis <lewisd2@rpi.edu>