CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 9: Memory addressing / mask ROM
Quiz
Microscopy lecture

- Last ~10 slides from lecture 8 were skipped
- Cover them today
Generic memory components

- Address bus
- Row addressing logic
- Column addressing logic
- Data bus
- Memory array
2D memory addressing

- Logical structure of memory is 1D
- 8 x 1M bit array is physically impractical!
 - Use 2D structure instead
 - Need col muxing
- Mapping of 2D linear addresses may vary
PIC12F683 SRAM

- 128 bytes
 - 32 rows
 - 4 cols of 8 bits
Row decode logic

- Input: N-bit row address bus
- Output: 2^n word lines
- $WL[0] = \ldots \land \neg A_3 \land \neg A_2 \land \neg A_1 \land \neg A_0$
- $WL[1] = \ldots \land \neg A_3 \land \neg A_2 \land A_1 \land A_0$
Example row decode logic

- PIC12F683 SRAM
- Data bus on M1 at right
- AND gates at center
- WL buffers at left
- Local interconnect on M1
- Word lines on poly
Column address logic

- For writable memories
 - Float BL except during writes
 - During writes, drive BL for appropriate column
- For all memories, during reads
 - Precharge before reads if necessary
 - All columns have data on them
 - Mux the one of interest to the data bus
Example column address logic
Why mask ROM?

- Lowest cost per bit of any memory tech
 - Single-transistor cells
 - No additional masks required (unlike flash etc)
- Highest density of any memory
- Immune to magnetic fields etc
- Can't be corrupted or tampered by software
 - But wait for lecture 14 ;}
Disadvantages

- Can't (practically) be patched after manufacture
 - Requires massively costly mask respin
 - Need fully debugged code beforehand!
Mask ROM vs OTP

- **Mask ROM**
 - Physically hard-wired
 - Dedicated mask for each ROM image

- **OTP (one-time-programmable) ROM (PROM)**
 - Programmed (once) after manufacture
 - Same mask for all ROM images
 - Less dense, requires write circuitry
 - Covered in the next lecture
The hacker's viewpoint

- Target has data in mask ROM
- How do we read it?
- Full ROM circuit analysis usually not required
 - We just want the data
 - Figure out enough to know what goes where
NOR mask ROM

- Pull all BL weakly to Vdd, assert one WL
- Switch to Vss may be at each WL/BL junction
 - WL off? Do nothing
 - WL on? Pull BL low
NOR mask ROM
NAND mask ROM

- Pull all BL weakly to Vdd
- Assert all but one WL
- Switches in series from BL to ground
- If no switch, output goes low
- If (open) switch, output stays high
- Denser than NOR, but slower
NAND mask ROM
Mask ROM technologies

- Via based
- Metal based
- Implant based
Via ROM

- Usually NOR type
- Transistor is always present
 - FEOL processing can be done for all chips
 - Then separate wafers for each product
- Remove M1-active via(s) to disable transistor
 - Single mask change
- Then standard M1 + interconnect routing on top
Via ROM layout
Via ROM (Roland LA32)
Via ROM (Roland LA32)
Via ROM (unknown source)
Metal ROM

- Usually NAND type
- Transistor is always present
- Short out transistors with M1
Metal ROM layout
Metal ROM example

- TODO: Example die photo if we can find one
Active area ROM

- Usually NOR type
- Can be read optically after deprocessing
- Cut or don't cut channel for transistor
Active area ROM layout
Implant ROM

• Can be NAND or NOR
• Cannot be read optically
 – But can be revealed with SCM or Dash etch
• To short out transistor (for NAND ROMs)
 – use weak implant to shift $V_t = 0$
• To open transistor (for NOR ROMs)
 – use weak implant to shift $V_t > V_{dd}$
Implant rom top metal
Implant ROM after Dash etch
Reading data from mask ROM

- Need to make bits visible first
 - Via: Delayer to via layer (if nonplanar)
 - Metal: Delayer to metal layer
 - Implant: Strip to active, then Dash etch

- Acquire imagery
Reading data from mask ROM

- Extract the 2D bit pattern
 - Can be done manually or with machine vision
 - Polarity and structure aren't yet known
- Figure out structure
 - Which bit layout is 1 and which is 0?
 - How do 2D addresses map to linear?
Structure analysis

- Many possible layouts
 - Interleaving of several bytes/words per row
 - Top-down or bottom-up address increment
 - Interleaved or concatenated banks
- Several ways to make sense of it all
 - Reverse the decode circuitry
 - Trial and error until dump makes sense
Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster <JohnDMcMaster@gmail.com>