CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 15: Anti-tamper technologies
Homework 2: PCB RE

• Due last day of class
• Go to one of the tech dumps and find a PCB
• Take photos of both sides, both overview and closeups of interesting areas
• Identify as many ICs as you can
• Draw a block diagram of the board and write a short report describing its functionality
Types of defenses

- Non-invasive protections
 - Lock bits, glitch detection
- Semi-invasive protections
 - Metal shielding
- Invasive protections
 - Die coats
 - Meshes
- Self-destructs
Lock bits

- Threat: Non-invasive memory dumping
- Config bit(s) set in firmware image
- Inhibit some operation when set
 - All JTAG operations
 - Debug port
 - Firmware readback
 - Erase/reprogram (use with care, can brick)
Lock bits

- Dedicated NVRAM (PIC12F)
 - Typically weaker - more vulnerable to UV etc
- Embedded in firmware flash (XC2C32A)
 - Can be easy to find if address map is known
 - Sometimes harder to tamper with
Glitch sensors

- Threat: Glitch/fault attacks
- Sensors to detect abnormal conditions
 - Fclk out of range
 - Vcore out of range
 - Temp out of range
Optical sensors

- Threat: Any attack involving opening package
- Scatter unshielded phototransistors around
- Trigger when illuminated
- May not detect laser glitching in a dark room
Glitch/optical sensors

- Can only detect specific fault conditions
- Will do nothing against other attacks
- Can sometimes be bypassed
 - ex: black ink over light sensors
Power noise generation

- Threat: Power analysis
- Random number generator plus variable load
- Induce random power fluctuations to confuse analysis
- Must be higher freq than sensitive power trace and completely unpredictable
Optical shielding

- Threat: UV erasure
- Place lots of big opaque metal polygons over fuse/memory areas
Optical shielding
Placement

- Place features likely to be tampered with next to critical data
- Ex: interrupt vector address right next to security bits
- UV attack etc is more likely to damage both
PIC12F683 vs XC2C32A

100x closer!
Active meshes

- Fill the top surface of the die with wire(s) forming a space-filling curve
- Alarm if the wire is broken, or if two signals short together
- Effective at preventing physical probing
- Also blocks top signal layer from visual inspection
Active mesh (Atmel ATSHA204)
Active mesh (ST K710A)
Active mesh (Renesas R5H30201)
Active mesh (AT&T SIM card)
Mesh bypass

- Several possible attacks
- Use FIB to nick (but not cut) mesh and edit underlying layers
- Remove mesh entirely and tie sense lines off
- Cut/gate mesh sensor output
- Go in from back side and avoid mesh entirely
- Etch/laser cut mesh and reconnect with probes
 - Works OK if not too many lines
Which of the meshes shown do you think is most secure? Least? Why?
Tamper responses

- Freeze (gate clock)
- Reset
- Self-destruct (erase firmware/data/keys)
Self-destructs

- **Flash erase**
 - Can be prevented
 - Laser/FIB/etch out charge pump caps
 - Cut/short write enable lines, HV outputs, etc
 - No HV = no writes

- **Zeroize battery-backed SRAM**
 - Much harder to prevent
Extreme countermeasures

- Mostly used in military devices? We have not see any of these in commercial products
 - Connoisseur Coating
 - LOPPER
Connoisseur Coating

- Developed by LLNL as part of the “Connoisseur project”.
- Very little public information
 - http://web.mit.edu/6.857/OldStuff/Fall95/lectures/lecture2.ps
1989 New York Times article

- “A resin about the consistency of peanut butter”
- “Opaque and resists solvents, heat, grinding and other techniques”
- “A second-generation coating is being developed that will automatically destroy the chip when an attempt is made chemically to break through the protective layer.”
1995 MIT lecture slides

- The second-generation coating?
- “a layer of alumina, silicon bits, and even sodium coating”
- “usually expensive”
Weaknesses of die coatings

• Intention is to make it difficult or impossible to reach top die surface
 − None of the public materials mention any protections on the back side
 − Die substrate is normally pretty thick, can handle some scratching
 − Backside attacks may allow coating bypass
LOPPER

• Developed by NSA for VINSON
• Not deployed initially due to budget cuts
• Plant “tiny, non-violent, shaped charges in critical junctures in our circuits that could be triggered by the application of external voltage”
• [A history of US COMSEC, page 148]
LOPPER v2?

- “burying a resistor in the chip substrates which will incinerate micro-circuitry with the application of external voltage”
- [A history of US COMSEC, page 149].
Possible LOPPER sighting?

- A large rock in Iran near a nuclear site exploded in 2012 when moved, throwing fragments of destroyed PCBs around

Attacks on LOPPER

- “Iranian Embassy” attack
 - If explosive charges are poorly placed, fragments may still yield useful circuit info
 - Collect shrapnel from several units and reconstruct circuit
Attacks on LOPPER

- “Bomb squad” attack
 - Destroy trigger mechanism
 - Bypass sensors
Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster <JohnDMcMaster@gmail.com>